
Pervasive SAS Techniques for Designing a Data
Warehouse for an Integrated Enterprise: An

Approach towards Business Process
Ardhendu Tripathy, Kaberi Das, Tripti Swarnkar

Department of Computer Applications, I.T.E.R, Shiksha ‘O’ Anusandhan University
Jagamohan Nagar, Bhubaneswar, India

Abstract- In an attempt to find a method to create a stable, fast,
easily modified replacement for a Microsoft Access database,
SAS rapidly became the only choice as a replacement tool. SAS
can very quickly be adapted for uses by relative beginners in
novel ways to exploit its strengths as a data extraction and
manipulation tool. Using PC SAS and SAS CONNECT for
ODBC a method was found to convert the most fragile parts of a
Rail Car Setoff reporting database. Aimed at the well-informed
MS Office user with exposure to interest in SAS, this paper is
intended to introduce PC SAS as a tool that does more than just
statistical analysis but also is a viable alternate tool to the more
traditional programming solutions. This shift from MS Access
to SAS cut processing time from over 20 minutes to less than 4
and reduced the complexity of the database from multiple
nested macros down to a single file that is in plain text in easily
readable SAS® code.

Keywords- Data Warehouse, OLAP, SAS

I. INTRODUCTION:

Data warehousing is a collection of decision support
technologies, aimed at enabling the knowledge worker
(executive, manager and analyst) to make better and faster
decisions. A data warehouse is a “subject-oriented,
integrated, time varying, non-volatile collection of data that
is used primarily in organizational decision making.”
Typically, the data warehouse is maintained separately from
the organization’s operational databases. There are many
reasons for doing this. The data warehouse supports on-line
analytical processing (OLAP), the functional and
performance requirements of which are quite different from
those of the on-line transaction processing (OLTP)
applications traditionally supported by the operational
databases. OLTP applications typically automate clerical data
processing tasks such as order entry and banking transactions
that are the bread-and-butter day-to-day operations of an
organization. These tasks are structured and repetitive, and
consist of short, atomic, isolated transactions. Data
warehouses, in contrast, are targeted for decision support.
Designing a warehouse database for an Integrated Enterprise
is a very complicated and iterative process since it needs data
from many departmental units, data cleaning, and requires
extensive business modeling.
Therefore, some organizations have preferred to develop a
data mart to meet requirements specific to a departmental or

restricted community of users. Of course, the development of
data marts entails the lower cost and shorter implementation
time.

II. TWO ENDS OF THE SPECTRUM

In the evolution of building data warehouses and data
marts, two practices have emerged. One advocates a
centralized enterprise data warehouse that serves as the
repository of data from all data sources, from which various
data marts can be created. The other advocates a purely
bottom-up approach where data marts are built as point
solutions to departmental or functional needs isolated from
the rest of the enterprise. Companies attempt to tie together
these data marts into universal data marts. While the bottom-
up approach avoids some of the pitfalls of the enterprise data
warehouse, it creates a different set of issues. Simon (1998)
referred to these two approaches as the “big bang” and the
“loose confederation” approaches respectively. Simon further
pointed out that the enterprise data warehouse “big bang”
approach attains the maximum data extraction and the highest
degree of source-neutral information abstraction. However,
as pointed out by Simon, there are many pitfalls, which
include cross-organization issues, technical complexity, data
semantic issues and long delivery time. On the other hand,
the bottom-up approach, while providing the point solutions
with respect to departmental or functional needs, will result
in information silos within an enterprise over time.

III. THE ENTERPRISE MODEL SOLUTION

The Enterprise Model framework is an extension of the

“
3-Schema” architecture originally [17]. The 3-Schema

addresses the construct of data based on three levels of
representation: the conceptual schema represents the logical
view of data, the internal schema represents the physical data
storage definitions, and the external schema represents the
user application views of data. While the 3-Schema provides
the foundation of data definition in the development of
databases and their applications, the fundamental concept can
be extended to enterprise information management. This
extended definition of the 3-Schema will be henceforth called
the Enterprise Model.

Ardhendu Tripathy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 853-861

853

IV. BUILDING DATA WAREHOUSE DETAILS

A. The Physical Data Warehouse
The physical data warehouses and all source systems

belong to the Technical Enterprise Model (TEM) ([17], [19]).
The Enterprise Data Model (EDM) can be physically realized
as one or more Operational Data Stores (ODS). The ODS
provides data consolidation of source systems. Data are
extracted, transformed and loaded into the ODS from
different source systems which include the legacy systems,
transactional systems and external systems. It should be
observed that the total consolidation of data into one data
store might not be practical for large enterprises. The key
point of the enterprise modeling approach is that the design
allows each data warehouse or data mart to source its data
from zero to one or more ODS. In the case of zero ODS, the
data warehouse or data mart sources data directly from the
source systems. When all data warehouses and data marts
source from one big ODS, the architecture is similar to the
enterprise data warehouse. The optimal design of the number
of ODS for an enterprise will take into consideration the
number and size of data sources, and their relationships to the
target data warehouses.

The phases of a data warehouse project listed below are
similar to those of most database projects, starting with
identifying requirements and ending with deploying the
system:

 Identify and gather requirements
 Design the dimensional model
 Develop the architecture, including the Operational Data

Store (ODS)
 Design the relational database and OLAP cubes
 Develop the data maintenance applications
 Develop analysis applications
 Test and deploy the system

B. Identify and Gather Requirements:
Identify sponsors: A successful data warehouse project

needs a sponsor in the business organization and usually a
second sponsor in the Information Technology group.
Sponsors must understand and support the business value of
the project. Understand the business before entering into
discussions with users. Then interview and work with the
users, not the data learn the needs of the users and turn these
needs into project requirements.

It is the data warehouse designer's job to determine what
data is necessary to provide the information. Topics for
discussion are the user’s objectives and challenges and how
they go about making business decisions. Business users
should be closely tied to the design team during the logical
design process; they are the people who understand the
meaning of existing data. Many successful projects include
several business users on the design team to act as data
experts and "sounding boards" for design concepts.

C. Design the Dimensional Model:
The dimensional model must suit the requirements of the

users and support ease of use for direct access ([1], [2]). The
model must also be designed so that it is easy to maintain and
can adapt to future changes. The model design must result in
a relational database that supports OLAP cubes to provide
"instantaneous" query results for analysts.

An OLTP system requires a normalized structure to
minimize redundancy, provide validation of input data, and
support a high volume of fast transactions. A transaction
usually involves a single business event, such as placing an
order or posting an invoice payment.

An OLTP model often looks like a spider web of
hundreds or even thousands of related tables. In contrast, a
typical dimensional model uses a star or snowflake design
that is easy to understand and relate to business needs,
supports simplified business queries, and provides superior
query performance by minimizing table joins.

Fi
Fig. 1. Flow Chart

Fig. 2. Star Diagram

1) Dimensional Model Schemas: The principal
characteristic of a dimensional model is a set of detailed
business facts surrounded by multiple dimensions that
describe those facts. When realized in a database, the schema
for a dimensional model contains a central fact table and
multiple dimension tables. A dimensional model may
produce a star schema or a snowflake schema.

Ardhendu Tripathy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 853-861

854

2) Star Schemas: A schema is called a star schema if all
dimension tables can be joined directly to the fact table. The
following diagram shows a classic star schema.

Fig. 3. Classic star schema

3) Snowflake Schemas: A schema is called a snowflake

schema if one or more dimension tables do not join directly
to the fact table but must join through other dimension tables.
For example, a dimension that describes products may be
separated into three tables (snowflake) as illustrated in the
following diagram.

Fig. 4. Classic Snowflake

4) Star or Snowflake: Both star and snowflake schemas
are dimensional models; the difference is in their physical
implementations. Snowflake schemas support ease of
dimension maintenance because they are more normalized.
Star schemas are easier for direct user access and often
support simpler and more efficient queries. The decision to
model a dimension as a star or snowflake depends on the
nature of the dimension itself, such as how frequently it
changes and which of its elements change, and often involves
evaluating tradeoffs between ease of use and ease of
maintenance. It is often easiest to maintain a complex
dimension by snow flaking the dimension. By pulling
hierarchical levels into separate tables, referential integrity
between the levels of the hierarchy is guaranteed. Analysis
Services reads from a snowflaked dimension as well as, or
better than, from a star dimension.

D. Developing the Architecture:

The data warehouse architecture reflects the dimensional
model developed to meet the business requirements [8].

Dimension design largely determines dimension table design
and fact definitions determine fact table design. Whether to
create a star or snowflake schema depends more on
implementation and maintenance considerations than on
business needs. Information can be presented to the user in
the same way regardless of whether a dimension is
snowflaked. Data warehouse schemas are quite simple and
straightforward, in contrast to OLTP database schemas with
their hundreds or thousands of tables and relationships.
However, the quantity of data in data warehouses requires
attention to performance and efficiency in their design.
E. Design the Relational Database and OLAP Cubes:

The star or snowflake schema is created in the relational
database, surrogate keys are defined and primary and foreign
key relationships are established. Views, indexes, and fact
table partitions are also defined. OLAP cubes are designed
that support the needs of the users.
F. Develop the Data Maintenance Applications:

The data maintenance applications, including extraction,
transformation, and loading processes, must be automated,
often by specialized custom applications. Data
Transformation Services (DTS) in SQL Server 2000 is a
powerful tool for defining many transformations. Other tools
are Transact-SQL and applications developed using scripting
such as Microsoft Visual Basic® Scripting Edition
(VBScript) or Microsoft JScript®, or languages such as
Visual Basic.
G. Develop Analysis Application:

The applications that support data analysis by the data
warehouse users are constructed in this phase of data
warehouse development. OLAP cubes and data mining
models are constructed using Analysis Services tools, and
client access to analysis data is supported by the Analysis
Server. Other analysis applications, such as Microsoft
PivotTables®, predefined reports, Web sites, and digital
dashboards, are also developed in this phase, as are natural
language applications using English Query. Specialized third-
party analysis tools are also acquired and implemented or
installed. Details of these specialized applications are
determined directly by user needs.
H. Test and Deploy the System:

It is important to involve users in the testing phase. After
initial testing by development and test groups, users should
load the system with queries and use it the way they intend to
after the system is brought on line. Substantial user
involvement in testing will provide a significant number of
benefits. Among the benefits are:
 Discrepancies can be found and corrected.
 Users become familiar with the system.
 Index tuning can be performed.

Data warehousing approaches and techniques are well
established, widely adopted, successful, and not controversial
([4], [7], [9]). Dimensional modeling, the foundation of data
warehouse design, is not an arcane art or science; it is a
mature methodology that organizes data in a straightforward,
simple, and intuitive representation of the way business

Ardhendu Tripathy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 853-861

855

decision makers want to view and analyze their data. The key
to data warehousing is data design. In this paper we are going
to describe how SAS tool will help us to design a data
warehouse for an integrated enterprise.

SAS is an excellent tool to replace either the entire system
or key parts of it. Making changes like this can lead to more
stability, better performance, and can simplify internal
structure of the system. Faced with the challenge of
maintaining a legacy Access database that is key to CPR’s
business a decision was made to re-write a number of key
sections. This database had passed through the hands of a
number of business developers in several different
departments leaving the database complicated and fragile. On
reviewing the issues, the most fragile section seemed to be
the macros and queries used to collect and manipulate the
data weekly and monthly. Two options were open at that
point:
 Rewrite the process using VBA and redevelop the

queries for stability.
 Re-develop the process in a different tool.

Due to the complicated relationships inside the Access
database, it seemed simpler to develop a new reporting
process.

SAS is driven by SAS programs that define a sequence of
operations to be performed on data stored as tables. SAS
enabled the redevelopment of the extraction routines and then
synthesis of the data in to its end report ready state. SAS
components expose their functionalities via application
programming interfaces, in the form of statements and
procedures. SAS Library Engines and Remote Library
Services allow access to data stored in external data
structures and on remote computer platforms.

V. DESCRIPTION OF SAS:

The DATA step section of a SAS program, like other
database-oriented fourth-generation programming languages
such as SQL or Focus, assumes a default file structure, and
automates the process of identifying files to the operating
system, opening the input file, reading the next record,
opening the output file, writing the next record, and closing
the files [16]. This allows the user/programmer to concentrate
on the details of working with the data within each record, in
effect working almost entirely within an implicit program
loop that runs for each record. Typical tasks include printing
or performing statistical analysis, and may just require the
user/programmer to identify the data set.

VI. COMPONENTS OF SAS:

SAS consists of a number of components, which
organizations separately license and install as required:

A. SAS Add-In for Microsoft Office:
A component of the SAS Enterprise Business Intelligence

Server is designed to provide access to data, analysis,
reporting and analytics for non-technical workers (such as
business analysts, power users, domain experts and decision

makers) via menus and toolbars integrated into Office
applications.

B. Base SAS:

The core of SAS, the so-called Base SAS Software,
manages data. SAS procedures software analyzes and
reports the data. The SQL procedure allows SQL (Structured
Query Language) programming in lieu of data step and
procedure programming. Library Engines allow transparent
access to common data structures such as Oracle, as well as
pass-through of SQL to be executed by such data structures.
The Macro facility is a tool for extending and customizing
SAS software programs and reducing overall program
verbosity. The DATA step debugger is a programming tool
that helps find logic problems in DATA step programs. The
Output Delivery System (ODS) is an extendable system that
delivers output in a variety of formats, such as SAS data sets,
listing files, RTF, PDF, XML, or HTML. The SAS
windowing environment is an interactive, graphical user
interface used to run and test SAS programs.

C. BI Dashboard:
It is a plugin for Information Delivery Portal. It allows the

user to create various graphics that represent a broad range of
data. This allows a quick glance to provide a lot of
information, without having to look at all the underlying data.

D. SAS Enterprise Business Intelligence Server: Includes
both a suite of business intelligence (BI) tools and a platform
to provide uniform access to data. The goal of this product is
to compete with Business Objects and Cognos' offerings.

E. Enterprise Guide: SAS Enterprise Guide is a Microsoft
Windows client application that provides a guided
mechanism to use SAS and publish dynamic results
throughout an organization in a uniform way. It is marketed
as the default interface to SAS for business analysts,
statisticians, and programmers. Though Data Integration
Studio is the true ETL tool of SAS, Enterprise Guide can be
used for the ETL of smaller projects.

F. OLAP Cube Studio: A client application that helps with
building OLAP Cubes.

G. SAS/ACCESS: Provides the ability for SAS to
transparently share data with non-native data sources.

H. SAS/ACCESS for PC Files: Allows SAS to transparently
share data with personal computer applications including MS
Access and Microsoft Office Excel.

I. SAS/CONNECT: Provides ability for SAS sessions on
different platforms to communicate with each other.
SAS/Warehouse Administrator: Superseded in SAS 9 by SAS
ETL Server.

Ardhendu Tripathy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 853-861

856

VII. FEATURES OF SAS:

 Read and write many different file formats.
 Process data in many different formats.
 SAS programming language, a 4th generation

programming language.
 DATA steps are written in a 3rd-generation procedural

language very similar to PL/I; SAS PROCS.
 SAS AF/SCL is a fifth generation programming

language is similar in syntax to Java.
 Many built-in statistical and random number

functions.
 Hundreds of built-in functions for manipulating

character and numeric variables.
 System of formats and informats. These control

representation and categorization of data.
 Comprehensive date and time-handling functions.
 Interaction with database products through a subset of

SQL (and ability to use SQL internally to manipulate
SAS data sets).

 SAS/ACCESS modules allow communication with
databases (including databases accessible via ODBC.

 Direct output of reports to CSV, HTML, PCL, PDF,
PostScript, RTF, XML, and more using Output
Delivery System. Templates, custom tag sets, styles
incl. CSS and other markup tools available and fully
programmable.

 Fast development time, particularly from the many
built-in procedures, functions, in/formats, the macro
facility, etc.

 An integrated development environment.
 Dynamic data-driven code generation using the SAS

Macro language.
 Can process files containing millions of rows and

thousands of columns of data.

VIII. DESIGN ENVIRONMENT REQUIREMENT FOR
ENTERPRISE DATA WAREHOUSE

In addition to meeting the specific project requirements, a
set of needs is projected onto the design environment and
tools being used to implement and manage the project itself
([17], [18], [19]). Since the enterprise data warehouse will
have a wide range of uses and therefore higher complexity,
an underlying object orientation of design is key. These
objects are considered metadata, or information about the
data, its processing, and use in the enterprise. From a design
standpoint, the warehouse development team needs to bring
sources together, transform and merge them as needed, and
ultimately arrive at a target or endpoint configuration.

A design environment is used to perform these tasks, and
depends on components to implement each type of operation
related to sources, transformations, and targets. We can use
the following terminology for these areas:

A. Source Designers:
These components support connection to source systems,

whether they are databases, operational systems, web
information, or any other regularly-used type of data.
Wizard-based panels guide the user through the exploration
and discovery process to locate the needed information.

Fig.4. a Typical large Data Warehouse with metadata underlying the entire

structure

B. Transformation Components:
These make it easy to perform common operations like

joining multiple data sources in various ways, sorting or sub
setting data based on some criteria, or other data-based
operations.

C. Target Designers:
These components support the population of a specific

endpoint for the data flow. This can refer to a data
organization such as a star schema, or a particular destination
requirement like writing analytic results back into a specific
location in an operational system.

IX. RELATED WORK

Our related work includes designing a data warehouse for
an integrated enterprise and here we will begin with
designing a warehouse for a banking sector using SAS as a
tool for development, So before going into detail design of
our work let us have a briefing regarding benefits of
implementing SAS for detail data store for banking also
regarding the industry version of banking DDS.

A. Describing SAS Detail Data Store for Banking:
 Expanded data model coverage with additional tables

and fields. The majority of the additional data is for
additional functionality in the latest versions of SAS
Credit Risk Management for Banking and SAS Credit
Scoring for Banking.

 DDL and metadata for a DB2 version of the banking
DDS (Base SAS software, SAS Scalable Performance
Data Server, and Oracle continue to be included in the
banking DDS).

Ardhendu Tripathy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 853-861

857

 The banking DDS is a data store that serves as the
single version for the SAS Banking Intelligence
Solutions.

 It contains the atomic-level data and historical
information that is needed to populate the solution data
marts.

 A huge range of valuable business analysis is possible
utilizing the Banking Data Warehouse, spanning
Customer Relationship Management, profitability
analysis, risk, etc.

Fig. 5. Integrated Solution Architecture for Banking Data Warehouse

B. Benefits of Implementing the SAS Detail Data Store for

Banking:
 The banking DDS provides a single data target for

loading data.
 Because the definition of the banking DDS table is

known, the extract, transform, and load (ETL) process
from the banking DDS to the solution data marts will
be pre-built.

 SAS Banking Intelligence Solutions can more easily
share system data with each other. For example, the
definition of a customer table is the same for SAS
Credit Scoring for Banking as it is for SAS Credit Risk
Management for Banking. Therefore, populating a
single definition of a customer table ensures that both
of these solutions have a single version of the truth.

 Data that is created from SAS Banking Intelligence
Solutions can be stored in a central location and shared
with other solutions. For example, the credit scores
from SAS Credit Scoring for Banking are written back
to the banking DDS and shared with SAS Credit Risk
Management for Banking.

C. Industry Version Of Banking DDS:
The banking DDS is part of a larger group of industry

data models. Although it would be convenient to have a
single data model that covers all industries, in reality,
different industries have different data needs.
For example, customer, supplier, product, and segment tables
share similar data attributes across industry.

Data more likely to differ considerably across industry is
the customer-facing or front office data. For example, in
banking, there are accounts; in retail, there are transactions;
and in insurance, there are premiums and claims. Because of
this difference in data, the industry versions of the banking
DDS contain tables that are part of the base, cross-industry
data model, and contain tables that are part of the industry-
specific data model.

Fig. 6. Sample of a Base Data Model with Industry-Specific Tables

D. Organizing Tables in the SAS Detail Data Store for

Banking Sector:

At a high level, the banking DDS can be grouped into
subject areas such as:

1) Parties:
 This subject area includes information on the parties

that are involved in banking, such as customers and
counterparties.

 Customer information includes details of
individuals, organizations, and corporate customers,
associated addresses and contact information,
household information for individuals, organization
information for corporate customers etc.

2) Financial Accounts:
 This subject area includes all of the types of

financial accounts.
 The information includes attributes that are common

to all financial accounts, such as date opened and
account balance.

 These accounts include loan, mortgage, core
banking, credit card, investment, Bonds, Share
Trading, Gold, life insurance, auto insurance,
property insurance, protection insurance, travel
insurance, and retirement.

3) Banking Accounts:
 Mortgage Account: Includes information such as

the account branch.

Ardhendu Tripathy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 853-861

858

 Loan Account: Includes information such as the
interest rate and the amount of the loan.

 Core Banking Account: Includes information such
as the overdraft charge amount and the interest rate.

 Credit Card Account: Includes information such as
the payment protection status and the payoff date.

4) Banking Transactions:
 It includes transactions that are related to traditional

banking accounts, such as withdrawals and deposits.
 Includes information that is related to the nature of

the transaction such as the transaction amount or the
channel of transaction.

5) Financial Reporting: This subject area includes
tables that relate to the financial reporting area of an
organization. The financial reporting area contains critical
data, including information on annual revenues, net sales
revenue, annual interest charges and profit before and after
tax, extraordinary income, and other financial measures. The
logical model report provides a drill-down feature.

X. DATA MODEL SAMPLE DESIGN OF OUR
WORK

Here we begin our work with designing various data
models using Microsoft Excel in which we started creating
various table and tried to derive the relationship among these
tables.

A. Customer Master:
 It contains Customer_Master table.
 Customer Address Details table.
 Customer Income Details table.
 Customer Type table.
 Customer Credit Grade table.

Fig. 7. Customer Master Table

B. Liability Master: It contains Demand Deposit and Term
Deposit.

Fig. 8. Demand Deposit Master Table

Fig. 9. Term Deposit Master Table

C. Assests Master:
 It contains Loan_ Master Table.
 OD_Master Table.
 Delequency_Master Table.

Fig. 10. Assests Master Table

Ardhendu Tripathy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 853-861

859

D. Implementation Work:

After successful design of the data model we moved
ahead with the designing of ETL (extract, transform, load).
For this we used Microsoft Access which would work as a
database to store data for our work. We started creating files
for each of the Master Tables where the sample datas could
be stored. We created a database called Bank which consisted
of datas of each Master Table. After designing the database
we proceeded further with the ETL work. For this we took
the help of SAS Application.

1) Coding for Account Master Table:

data dic;
input source_table $ source $ target_table $ target
$ label $ informat $ format $ conv $;
datalines;
DDACM DDACN dd_ac_master txt_ac_num ACCOUNT 8. 8.
NILL
;
data dic;
set dic;
if conv = 'NILL' then conv = '';
run;

filename test catalog 'work.test.cet.source';

// catalog will be created

if _n_ then put "Data dd_ac_master; set DDACM;";
code = trim(target)||' =
'||trim(source_table)||'.'||trim(source)||';';
put code;
run;

filename test catalog 'work.test.cet.source' mod;
data _null_;
set dic end = _last_;
file test;
{

}
put code;
run;

filename test catalog 'work.test.cet.source' mod;
data _null_;
set dic end = _last_;
file test;
{

}
put code;
if _last_ then put "run;";
run;

2) Coding for Customer Master

data dic;
input source_table $ source $ target_table $ target
$ label $ informat $ format $ conv $;
datalines;
DDCSM DDCSID dd_cs_master txt_ac_num;
data dic;
set dic;
if conv = 'NILL' then conv = '';
run;

filename test catalog 'work.test.cet.source';

data _Null_;

//catalog will be created

code = trim(target)||' =
'||trim(source_table)||'.'||trim(source)||';';
put code;
run;

filename test catalog 'work.test.cet.source' mod;
{;

}
set dic end = _last_;
file test;
code = "Format "||trim(target)||' =
"'||trim(format)||'";';
put code;
run;

filename test catalog 'work.test.cet.source' mod;

XI. CONCLUSION

This report presents an experimental evaluation of the
speedup obtained by using the DWS technique. This
technique takes advantage of the specific characteristics of
star schemas and typical data warehouse query profile to
guarantee optimal load balance of query execution and assure
high scalability. In data warehouse striping fact tables are
distributed over an arbitrary number of computers and the
queries are executed in parallel by all the computers,
guaranteeing a nearly optimal speedup. We are now on the
verse of designing our ETL process and are on the process of
designing a warehouse for a Banking Sector.

REFERENCES

[1] Jens Albrecht, Holger Gunzel, Wolfgang Lehner, “An Architecture for
Distributed OLAP”, Int. Conf. PDPTA 1998.

[2] APB-1 Benchmark, Olap Council, November 1998. Available at
www.olpacouncil.org.

[3] P.M. G. Apers, C. A. van den Berg, J. Flokstra, P. W. P.J. Grefen, M. L.
Kersten, A. N. Wilschut, “PRISM WDB: A parallel, main-memory,
relational DBMS,” IEEE Transactions on Knowledge and Data
Engineering, December 1992,541 -554.

[4] H. Boral, et al, “Prototyping Bubba, A highly parallel database system”,
IEEE Transactions on Knowledge and Data Engineering, Vol. 2, March
1990, pp.4-24.

[5] Chee-Yong Chan and Yannis E. Ioannidis, “Bitmap index design and
evaluation”, Proc. of ACM SIGMOD Intemational Conference on
Management of Data, 1998, pp.355 - 366.

[6] D. J. DeWitt et al., “The Gamma Database Machine Project”, IEEE
Transactions on Knowledge and Data Engineering, Vol. 2, March 1990,
pp.44-62.

[7] D. J. DeWitt and Jim Gray, “Parallel Database Systems: The future of
high performance database systems”, Communications of the ACM,
35(6), June 1992, pp.85-98.

[8] Pedro Furtado and H. Madeira, “Analysis of Accuracy of Data
Reduction Techniques”, First International Conference, DaWaK’99,
Florence, Italy, pp.377-388.

[9] G. Graefe, “Query evaluation techniques for large databases”, ACM
Computing Surveys, 25(2):73-170, 1993.

[10] Joseph M. Hellerstein, “Online Processing Redux”, Data Engineering
Bulletin, Vol. 20, N”3, September 1997, pp. 20-29.

Ardhendu Tripathy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 853-861

860

[11] Ralph Kimball. The’Data Warehouse Toolkit. Ed. J. Wiley & Sons,
Inc, 1996.

[12] Richard J. Lipton, Jeffrey F. Naughton and Donovan A. Schneider;
“Practical selectivity estimation through adaptive sampling”, Proc. of
ACM SIGMOD Intemational Conference on Management of Data,
1990, pp.1 - 11.

[13] Hongjun Lu, Beng Chin. Ooi, and Kian Lee Tan. Query Processing in
Parallel Relational Database Systems. IEEE Computer Society, May
1994.

[14] Patrick E. ONeil, Dallan Quass, “Improved Query Performance with
Variant Indexes”, Proc. of ACM SIGMOD Int. Conference on
Management of Data, 1997, pp.38-49.

[15] Oracle Corporation, Oracle RDBMS Version 7 Parallel Server
Administrators Guide.

[16] Mehler, G. (2006). Data warehousing for the Enterprise, SAS
Institute Inc., Cary North Carolina, 143-27.

 [17] C. Adamson, M. Venerable. Data Warehouse Design Solutions. J.
Wiley & Sons, Inc.1998.

[18] R. Agrawal, A. Gupta, S. Sarawagi. Modeling Multidimensional
Databases. ICDE 1997.

[19] C. Ballard. Data Modeling Techniques for Data Warehousing. SG24-
2238-00. IBM Red Book. ISBN number 0738402451. 1998.

[20] M. A. R. Kortnik, D. L. Moody. From Entities to Stars, Snowflakes,
Clusters, Constellations and Galaxies: A Methodology for Data
Warehouse Design. 18th. International Conference on Conceptual
Modelling. Industrial Track Proceedings. ER’99.

[21] S. Chaudhuri, U. Dayal. An overview of Data Warehousing and OLAP
Technology. SIGMOD Record 26(1). 1997.

[22] M. S. Hacid, U. Sattler (DWQ project). An Object-Centered Multi-
dimensional Data Model with Hierarchically Structured Dimensions.
Proc. of the IEEE Knowledge and Data Engineering Workshop. 1997.

Ardhendu Tripathy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 853-861

861

